

Renewable Energy in India

Amit Kumar TERI University, India

Outline

- Key drivers
- Rationale for renewables
- Enabling environment
- Investments & growth
- India's strength
- Conclusions

Key drivers

- Energy scenario
 - The demand for energy in the country has been growing rapidly
 - Electricity supply suffering from huge shortages
 - Over 289 million people without access to electricity
 - Electricity supply situation is generally poor even in electrified villages
 - Over 80% of rural India dependent on traditional fuels for cooking
- Security of energy supply
 - The import dependency in 2031 could reach

o Oil: 88%

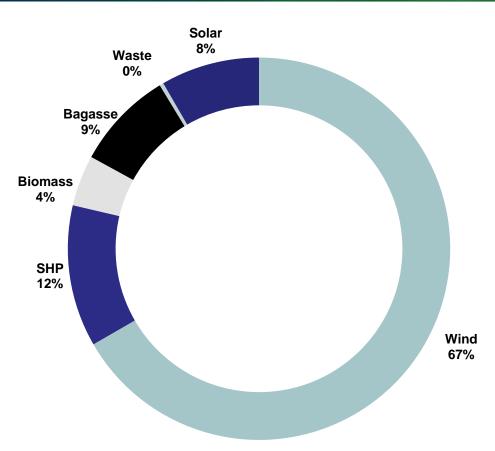
Coal: 72%

- Environmental concerns
 - Macro level
 - Micro level

Rationale for renewables

- India is endowed with good renewable energy resources like solar, wind, small hydro, and biomass.
- Renewables energy technologies can work equally well in
 - Centralized, large power generation
 - Decentralized, distributed energy generation
- Renewable energy markets
 - Utility-scale electricity
 - Off-grid or distributed electricity systems
 - Decentralized energy systems

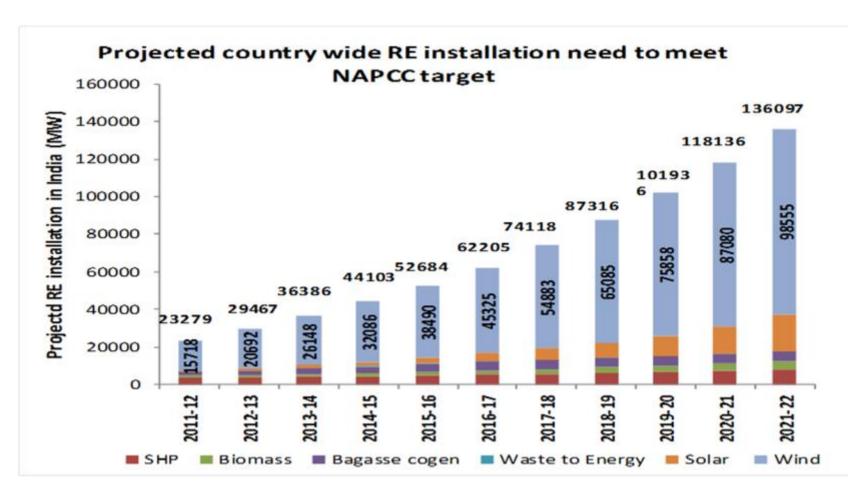
Enabling environment



- Policy frameworks
 - Electricity Act 2003
 - National Electricity Policy 2005
 - Rajiv Gandhi Grameen Vidyutikaran Yojna (RGGVY)
 2005
 - National Tariff Policy 2006
 - Integrated Energy Policy 2006
 - National Action Plan on Climate Change 2009
 - Jawaharlal Nehru National Solar Mission 2010
 - 12th Five Year Plan
 - State-level RE/Solar policies

Grid connected RETs

(as on March 31, 2014)



- Total RETs: 31.70 GW
- Share in overall electricity mix: ~13%
- Off-grid power: 1022 MW

Source: MNRE

RE development scenario in India

To meet 17% NAPCC target by 2021-22, 98.5 GW wind installation will be required apart from 20 GW solar

JNNSM targets

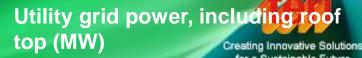
20000

2000

20 million

4000-10000

1000


15 million

1000-2000

200

7 million

Off grid solar applications (MW)

Solar Collectors (sq. meters)

2017-22

To create favorable conditions for solar manufacturing capability, particularly solar thermal for indigenous production and market leadership.

Capacity will be aggressively ramped up to create conditions for up-scaled and competitive solar energy penetration in the country after taking into account the experience of the initial years.

2010-13

Main focus on capturing the easily available options in solar-thermal and on promoting off-grid systems to serve populations without access to commercial energy and modest capacity addition in grid-based systems.

Launched in 2008

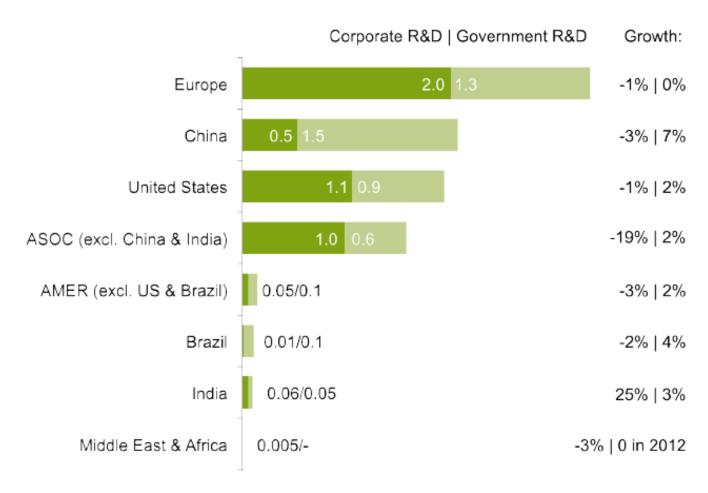
...Enabling environment


- Regulatory facilitation
 - Renewable Purchase Obligation
 - Separate quota for solar and biomass
 - Feed-in tariff
 - Renewable Energy Certificates
 - Access to grid
 - Wheeling of electricity
 - Banking of electricity
 - Third party sale

Green corridor

- It is envisaged that about 41 GW of RE capacity may be added during 2012-17 (~ 66 GW cumulative)
 - Wind (30 GW)
 - Solar (9.5 GW)
 - Small Hydro (1.5 GW), thus
- Transmission system strengthening to facilitate
 - transfer of RE power from the RE rich States (viz. Tamil Nadu, Karnataka, Andhra Pradesh, Gujarat, Maharashtra, Rajasthan & Himachal Pradesh) to other States
- Estimated cost: USD 7 billion

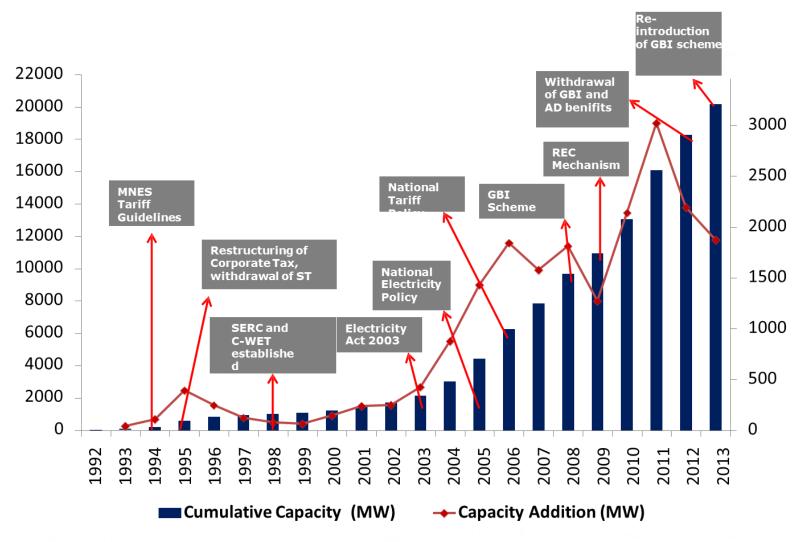
New investments in RE by country, 2013 and growth on 2012, \$Bn



Source: UNEP, Bloomberg New Energy Finance

The renewable electricity space witnessed 32 private equity (PE) and merger and acquisition (M&A) deals worth \$129 billion in 2013.

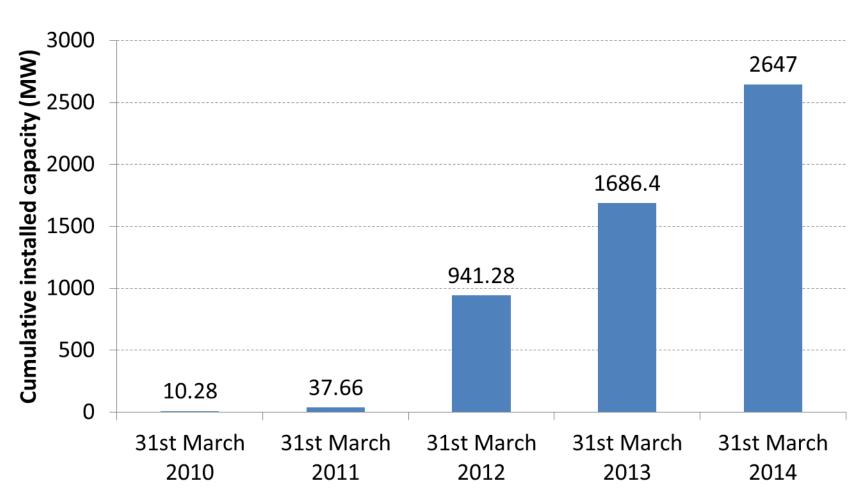
Private & public R&D investment, 2013 and growth on 2012, \$Bn



Source: Bloomberg, Bloomberg New Energy Finance, IEA, IMF, various government agencies

Wind power growth trends

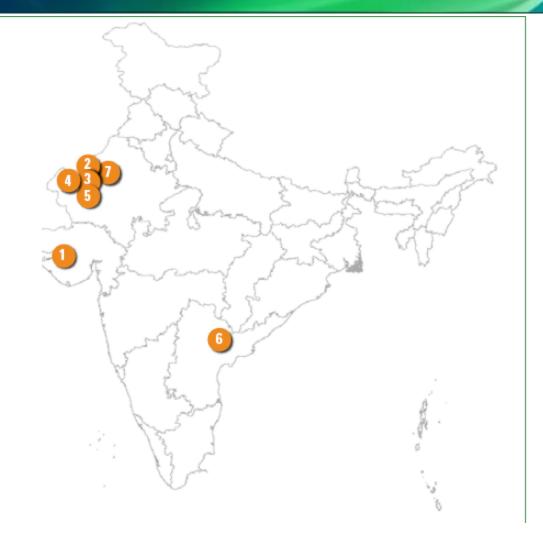
Market Shares of Top 10 Wind Turbine Manufacturers, 2013



Vestas (Denmark) 13.1%	Goldwind (China) 11.0%	Enercon (Germany) 9.8%		
		Siemens (Germany) 7.4%		
Others 30.5%		GEWind (U.S.) 6.6%	Gamesa (Spain) 5.5% Suzlon Group (India) 5.3%	
		Next 5 manufacturers	United Power (China) 4.0% Mingyang (China) 3.5% Nordex (Germany) 3.3%	
			Based on total sales of ~3	7.5 GW

The average size of turbines delivered to market in 2013 was 1.3 MW in India.

Solar PV growth trends



CSP in India

- Aurum Renewable Energy
- Corporate Ispat Alloys
- Oliwakar Solar
- O Godawari Green Energy
- KVK Energy Ventures
- Megha Engineering
- Rajasthan Sun Technique

Concentrated Solar Power: Heating up India's solar thermal market under the national solar mission, Council on Energy, Environment, Water and Natural Resources Defense Council, 2012

... CSP in India

A second
Creating Innovative Solutions for a Sustainable Future

101						ioi a sustainable ruture				
Project		oject	Promoter	Technology	Size (MW)	Bid (₹/kWh)	Supplier(s)	EPC Contractor	Location	Financing (Lead)
	1	Aurum Renewable Energy	Aurum	Linear Fresnel	20	12.19	Sumitomo Shin Nippon	Indure	Mitrala, Porbandar, Gujarat	SBI
	2	Corporate Ispat Alloys	Abhijeet	Parabolic Trough	50	12.24	Siemens turbine & receivers	Shriram EPC	Nokh, Pokaran, Rajasthan	BOI and IOB
	3	Diwakar Solar	Lanco	Parabolic Trough	100	10.49	Siemens	Lanco Solar & Initec Energía	Askandra, Nachna, Rajasthan	Axis
	4	Godawari Green Energy	Hira Group	Parabolic Trough	50	12.20	Siemens, Schott Glass, Flabeg, Aalborg	Lauren, Jyoti Structures	Nokh, Pokaran, Rajasthan	Bank of Baroda led consortium
	5	KVK Energy Ventures	Lanco	Parabolic Trough	100	11.20	Siemens	Lanco Infratech	Askandra, Nachna, Rajasthan	ICICI
	6	Megha Engineering	Megha Engineering Limited	Parabolic Trough	50	11.31	GE	MEIL Green Power Limited	Anantapur, Andhra Pradesh	IDBI led consortium
	7	Rajasthan Sun Technique	Reliance	Compact Linear Fresnel	100	11.97	Areva	Reliance Infrastructure	Dahanu, Pokaran, Rajasthan	ADB, US Ex-Im, FMO

Concentrated Solar Power: Heating up India's solar thermal market under the national solar mission, Council on Energy, Environment, Water and Natural Resources Defense Council, 2012

India globally

Annual investments/net capacity additions/production in 2013

Hydropower capacity	China	Turkey	Brazil	Vietnam	India
CSP capacity	USA	Spain	UAE	India	China
Wind power capacity	China	Germany	UK	India	Canada
Solar water heating capacity	China	Turkey	India	Brazil	Germany

...India globally

Total capacity or generation as of end-2013

Renewable power (excluding hydro)	China	USA	Germany	Spain/Italy	India
Biopower generation	USA	Germany	China	Brazil	India
Wind power capacity	China	USA	Germany	Spain	India

India's strengths

- Well-developed R&D infrastructure
- Wide network of academic and research institutions
- Large manufacturing base, spanning all the areas
- Availability of skilled manpower
- Strategic location: access to the vast upcoming markets

Conclusions

- India has abundant renewable energy resources, which can contribute towards reduction in dependency on imported fossil fuels.
- Renewables assume special significance in India considering its geographic diversity and size, not to mention the size of its rural economy.
- India has an ambitious RE plan.

Thank You!

akumar@teri.res.in www.teriin.org www.teriuniversity.ac.in